

LA-UR-15-20907

Approved for public release; distribution is unlimited.

Title: Trinity Era Storage

Author(s): Lamb, Kyle E.

Intended for: Document release to Sandia National Laboratory.

Issued: 2015-02-09

Trinity Era Storage

Kyle Lamb

HPC-3 Infrastructure Team Lead

01/26/2015

UNCLASSIFIED

Agenda

- Current Infrastructure
- Trinity requirements
- Limitations of existing solution
- Erasure code
- Trinity Campaign storage

Current Infrastructure

160GB/s Write

45PB 3.0GB/s Write 150MB/s Read

UNCLASSIFIED

HPSS Disk Performance

- 3.5 GB/s Write
 - Bottleneck HPSS disk cache or Metadata engine disk
- 1.3 GB/s Read
 - Bottleneck HPSS disk cache or Metadata engine disk

Note: Disk performance is using PSI with parallel movers, HSI work is needed to operate in parallel.

HPSS Tape Performance

- 194MB/s *should be better
- Largest to date: 23TB file read back from tape with 4 tape drives
- Tape is bottleneck

Caveat: HPSS-only archive solution will require significant development to address n-to-n performance, RAIT, and design of a chunking utility.

Current HPSS Archive Capacity

- HPSS growth rate: approximately 600TB per month sustained
 - 2X the memory footprint on the floor (Cielo, Luna, Typhoon, and Viewmaster2)
 - Growth rate has slowed, used to be 3X memory per month

HPSS contains 40PB of data in aggregate

- The HPSS Disk cache has a capacity of 360TB
- Cache is written over twice every month.

Most Labs are targeting 3-6 Months of disk cache vs. our 2 weeks

Proposed Trinity Archive Bandwidth to Los Disc Cache Requirements

- 2.0PB Memory * .8 = 1.6PB * 1024 TB/PB = 1638.4 TB
- 1638.4 TB * 1024 TB/GB = 1,677,721.6 GB
- 12 hrs * 60min/hr * 60sec/min = 43,200 seconds
- 1,677,72.6GB / 43,200 sec = 38.83 GB/sec Minimum

Data Set Size	Recall Time Window	Performance Required	Required Increase In performance
1.6PB	12hrs	38.8GB/s	200X
750TB	12hrs	17.8GB/s	92X
750TB	24hrs	8.9GB/s	46X
750TB	48hrs	4.5GB/s	23X

Los Alamos NATIONAL LABORATORY EST. 1943

Current HPSS
Read Performance
198MB/s
* Given Above,
Recall of 1.6PB
would take
100 days,
Assuming things
don't break!

Archive at the scale of Cielo's current Parallel File System 40GB/s

Design Assumption: Expected growth rate of 2X main memory in operation

- 2PB for Trinity
- .5PB for CTS1, Luna, etc.
- 2.5PB * 2 = 5PB/month growth

Result: Expected usage of 5PB/month unless systematic usage policy changes are adopted e.g.,

Space quota (LLNL)
Recharge quota (SNL)

Note: A single 750TB file spans up to 88 T10KD tapes

By comparison: Current archive growth is 600TB/month with Cielo and all other systems currently in operation

Largest file to date ever recalled from tape:

23TB @194MB/s -> 30hours

A "baby" File in a Trinity world.

Caveat Detail: Required HPSS Development

- Transfer Agent
 - Multi-node transfers with HSI.
- HPSS Metadata engine
 - Distributed database required (3.2M n-to-n files)
- RAIT(Redundant Array of Independent Tape)
 - Development underway to accommodate 14+2 RAIT
- HPSS Disk Cache
 - Increase disk cache to accommodate minimum of 2 months of data (10PB)
- HTAR
 - Enable Parallel HTAR utility (Ingest 3.2M n-to-n files)
- Chunk Utility
 - Required to enable multiple RAIT sessions

UNCLASSIFIED

Tech Notes:

Note: Features are listed in priority order

- Scale of HPSS Disk
 Cache changes if we augment archive
- Chunk Utility is only needed to scale beyond 2.1GB/s

Campaign Augmented Archive

Campaign Storage

A Technical solution that utilizes disk-based storage

- Leverages experience in recently completed "Campaign Storage" effort in open network
- Performance of system scales linearly with the amount of storage in use
- Utilizes Disk Scalable Units (DSUs) to provide large pools of storage on commodity (less expensive) disk
- Utilizes a relatively new storage algorithm referred to as erasure coding.

Caveats: Even with a Campaign-enhanced HPSS archive, it may be necessary to scale back the amount of data written to the archive (e.g. Quotas both in Campaign and HPSS).

Proposed Approach

- Build out a campaign enhanced storage solution to provide parallel file system performance with near archive level storage reliability
- Campaign storage becomes the long-term data storage location for large data sets and large n-to-n results
 - Not an unlimited resource: Quotas will be in place
- HPSS remains the archive location for high-value software repositories, important visualization files, important data sets, etc...
- Scaling requirements will necessitate a cap on files that can be transferred to HPSS, in the range of 30TB

What Disk-based Erasure-coded Storage Enables

Reliability:

- Creation of a higher parity set than is possible with RAID 6
- Survival of 3-8 disk/partition failures without data loss
- Highly fault tolerant parallel scalable storage
- Much faster rebuilds when disk failures occur

Scalability:

- Scaling of large numbers of parallel disks that enables high bandwidth data transfers
- Performance scales linearly with disk deployments

Flexibility:

- DSUs can be utilized with various file systems and storage solutions
- GPFS, HPSS, TSM, etc...

- Quotas will probably be required even in a campaign-enhanced storage solution
 - Quotas are more flexible in a campaign storage solution
- The building blocks of Campaign storage scale linearly with both performance and capacity
 - Tape solutions offer the ability to scale capacity independent of the performance
- Development on HPSS is still required with a campaign-enhanced solution

Campaign-enhanced: Campaign storage does not replace HPSS

Campaign-enhanced solution allows us to scale performance more economically than HPSS alone

Performance and Capacity Campaign

Read Performance:

~4GB/S per Disk Scalable Unit (DSU)

\$450K per DSU

Capacity:

6.8PB per DSU usable (8TB drives)

*Additional capacity would be added by adding additional DSUs

Disk Scalable Unit (DSU)

Xyratex Enclosure 84 Drives per Storage Node 8.0PB RAW

Each DSU is configured with a 40+8 parity set

UNCLASSIFIED

DSU Building Blocks

- Build out DSUs as large disk pools using a 40+8 parity stripe
- Can survive the loss of up to 8 disks/failure domains
 - If built with 48 servers we can survive the loss of 8 servers
- Up to 500MB/s per storage node
- Goal to attain 500MB/s to 1GB/s per GPFS connector node
- Testing with DSU behind HPSS and TSM

HPSS use cases: Large file landing Zone 2nd copy pool small files TSM use case: 2nd copy on disk Customer archive solutions

UNCLASSIFIED

Note:

- Erasure Code parity is variable
- Reliability calculator shows 14 9's data reliability with 40+8

- Deploy ~30PB this year
- Target 1GB/s per PB of storage
- Utilize FTAs that will interface with Lustre FS from Trinity
- FTAs will allow access to both Campaign and HPSS
- FTAs will be utilized for local and remote data transfer.
- PFTOOL utilized for local data transfer HSI, pftp, etc. for remote

Tech Notes:

- Performance scales with storage (100GB/s eventual target
- FTAs and Lustre single client performance may be bottleneck
- FTAs will utilize IPOIB for access to HPSS, Campaign, and Lustre

Questions?

NIS